model { for(i in 1:N){ mu_M1[i,1] <- 1 #baseline is the 1st category mu_M1[i,2] <- exp(alpha1*x[i]) mu_M1[i,3] <- exp(alpha2*x[i]) sum_M[i] <-mu_M1[i,1]+mu_M1[i,2]+mu_M1[i,3] for (k in 1:3) {mu_M[i,k] <- mu_M1[i,k]/sum_M[i]} M[i]~dcat(mu_M[i,]) mu_y[i] <-c*x[i]+beta1*equals(M[i],2)+beta2*equals(M[i],3) y[i] ~ dnorm(mu_y[i],prec2) ie[i]<-(alpha1*mu_M[i,2]*(1-mu_M[i,2])-alpha2*mu_M[i,2]*mu_M[i,3])*beta1+(alpha2*mu_M[i,3]*(1-mu_M[i,3])-alpha1*mu_M[i,2]*mu_M[i,3])*beta2 } alpha1 ~ dnorm(0.0,0.01) alpha2 ~ dnorm(0.0,0.01) beta1 ~ dnorm(0.0,0.000001) beta2 ~ dnorm(0.0,0.000001) c ~ dnorm(0.0,0.000001) DE<-c var2 ~ dgamma(1,0.1) prec2 <-1/var2 }